This is an example of a HTML caption with a link.

Оптические методы исследования в офтальмологии

Наблюдаемая картина была сходна с картиной на одноосных кристаллах в поляризованном свете, что вызвало предположение, что роговица ведет себя подобно изогнутой кристаллической пластинке, оптическая ось которой перпендикулярна ее поверхности.

Новый подход к вопросам оптической анизотропии роговой оболочки глаза предложил F. Zandman в 1966 году.

Он провел изучение интерференционных картин на роговой оболочке живого глаза и указал на возможность использовать их для диагностики. Было отмечено, что фотоупругие свойства роговой оболочки глаза зависят от ее состояния и существенно изменяются при различных патологических процессах.

Основной целью работы была разработка способа измерения внутриглазного давления без контакта датчиков с роговицей. В работе был установлен вид интерференционной картины на роговой оболочке здорового глаза и указаны основные факторы, формирующие интерференционную картину.

Это растягивающее действие глазодвигательных мышц и внутриглазного давления, а также вязко-упругие свойства анизотропных волокон роговицы.

Как было описано ранее, роговая оболочка глаза оптически анизотропна, причем анизотропия складывается из двух частей - статической и динамической.

Статическая обусловлена:

структурой роговичного коллагена;

взаиморасположением его волокон в ткани роговицы;

формой самой роговицы;

Динамическая связана с уровнем внутриглазного давления и анатомо-функциональным состоянием глазодвигательных мышц (т.е. имеет фотоупругую природу).

Оптическая анизотропия любого вещества или конструкции может быть обнаружена и исследована в поляризованном свете.

При освещении оптически анизотропного вещества поляризованным светом и рассматривании его через поляроид на нем наблюдается интерференционная картина, которая может быть различной, т.е. представлять собой набор полос или световых пятен. Если исследование проводится в поляризованном белом свете, то интерференционная картина, обычно, ярко окрашена.

При освещении роговой оболочки живого глаза поляризованным белым светом, на ней наблюдается специфическая интерференционная картина, представляющая собой темный крест, образованный двумя гиперболами, по центру картины и радужно окрашенную фигуру в форме ромба по периферии.

Поскольку экраном для наблюдения картины служит радужка, которая у разных людей имеет различную окраску, цветовой состав интерференционной картины у разных людей различается.

Форма картины, тоже, может быть различной, что обусловлено различиями в структурно-функциональной организации экстраокулярных мышц глаза, наличием роговичного астигматизма или повышением внутриглазного давления.

Биомикроскопия осуществляется с помощью роговичного микроскопа типа ЩЛ-56, состоящего из осветителя, который дает щелевой пучок света различной толщины, бинокулярного микроскопа и координатного столика.

В основной части прибора – осветителе – находится электрическая лампа СЦ-69 (6 В, 25 Вт), питающаяся от электрической сети с напряжением 127 или 220 В через понижающий трансформатор.

При помощи щелевой лампы можно получить не только вертикальную, но и горизонтальную щель. Посредством диафрагмы регулируется длина и ширина щели – от 0,06 до 8 мм.

Голова испытуемого фиксируется с помощью специальной подставки, имеющей упоры для лба и подбородка. Осветитель, микроскоп и исследуемый глаз должны находиться на одном уровне.

Исследователь рассматривает глаз через бинокулярный микроскоп, изменяя ширину щели осветителя, увеличение микроскопа, спектральный состав света.

Специальная диафрагма на осветителе позволяет менять ширину световой щели (от полностью открытого осветителя, когда освещена вся поверхность глазного яблока, до узкого пучка, что позволяет увидеть оптический срез на полупрозрачных и прозрачных тканях глаза). Щелевая лампа типа ЩЛ-56 оснащена набором цветных светофильтров, которые можно вводить в систему осветителя путем вращения барабана.

Перейти на страницу: 1 2 3 4 5